Nitrogen Hyperfine Structure in Allylcyanide Synperiplanar

An Application of Microwave Fourier Transform Spectroscopy

G. Bestmann and H. Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Christian-Albrechts-Universität Kiel

Z. Naturforsch. **38a**, 1044–1045 (1983); received June 15, 1983

With the help of Microwave Fourier transform Spectroscopy we were able to resolve the nitrogen hyperfine structure of allylcyanide synperiplanar (cis). As the rotational relaxation is relatively rapid this molecule is even for this technique at the limit of the present possibilities.

The microwave spectrum of allylcyanide, CH₂= CHCH₂CN, in its syn- and antiperiplanar (cis and trans) conformation was first investigated by Sastry et al. [1]. It was not possible to resolve the nitrogen hyperfine structure (hfs) by Stark spectroscopy. By use of Microwave Fourier transform (MWFT) spectroscopy [2-4] in the range of 5 to 18 GHz we succeeded to resolve the hfs pattern of rotational transitions of allylcyanide synperiplanar.

The sample was purchased with 98% purity from Ega Chemie, Steinheim, and used without further purification. The spectra were taken at a temperature of 230 K and pressures down to 0.1 mTorr.

Table 1: Measured transitions [MHz] of allylcyanide synperiplanar, v_{FT} : unresolved or calculated unsplit line frequencies by MWFT spectroscopy, v_{Stark} : frequencies by MW Stark spectroscopy, v[1]: by Ref. [1].

- K' ₊ V _{FT}	v_{Stark}	$v_{[1]}$
14 181.420	14 181.578	14 181.35
13 123.310	13 123.322	
11076500	14 076.554	14 076.17
12 21 4 0 6	5	12 314.24
	22 823.322	
	3	9 417.78
	25 392.998	
	19 898.628	19 898.50
	19 507.120	19 506.65
12	18 428.852	18 428.50
		10 978.03
		12 731.42
֡	000 14 181.420 13 123.310 14 076.500 11 12 314.960 11 002 9 417.608 12 01 002 12 01 002	14 181.420 14 181.578 13 123.310 13 123.322 14 076.500 14 076.554 11 12 314.966 11 22 823.322 9 417.608 12 25 392.998 19 898.628 19 507.120 11 18 428.852

Reprint requests to Prof. Dr. H. Dreizler, Institut für Physikalische Chemie der Universität Kiel, Olshausenstr. 40, D-2300 Kiel.

Table 2. Resolved hfs multiplets $v_{\rm exp}$ [MHz] of allylcyanide synperiplanar. $v_{\rm FT}$: calculated unsplit line, $\Delta v_{\rm exp}$, $\Delta v_{\rm calc}$ [MHz]: experimental and calculated hfs splittings.

[] tilp til				0	
$J_{K-K_{+}} - J'_{K'-K'_{+}}$	F-F'	$v_{\rm exp}$	$v_{\rm FT}$	$\Delta v_{\rm exp}$	$\Delta v_{\rm calc}$
$2_{11}-1_{10}$	1-0	14077.439			
	2-2	14076.715		0.724	0.779
				0.144	0.091
	3-2	14076.571	14076.500	0.515	0.523
	2 - 1	14076.056		0.152	0.142
	1 - 1	14075.904		0.132	0.142
$2_{12} - 1_{11}$	1 - 0	12315.364		0.251	0.220
	3-2	12315.113	12314.966	0.231	0.238
		10014554		0.559	0.573
	2 - 1	12314.554			
$2_{11} - 2_{02}$	1 - 1	9417.050			
				0.406	0.387
	3 - 3	9417.456	9417.608	0.504	0.00
		0410460		0.706	0.696
	$\frac{2-2}{2-2}$	9418.162			
$3_{12} - 3_{03}$	2 - 2	10977.369			
				0.229	0.217
	4 - 4	10977.598	10977.747	0.615	0.630
	2 2	10070 212		0.615	0.620
	3-3 $3-3$	10978.213			
$4_{13} - 4_{14}$	3 - 3	8780.693			
				0.233	0.203
	5 - 5	8780.926	8781.119		
				0.767	0.788
	4-4 7-7	8781.693			
$8_{26} - 8_{27}$	7-7	11474.978			
				0.072	0.058
	9-9	11475.050	11475.183		
				0.464	0.458
	8 - 8	11475.514			
$8_{54} - 9_{45}$	7 - 8	11549.425			
				0.044	0.032
	9 - 10	11549.469	11549.549		
	0 0	11540 540		0.271	0.274
	8-9	11549.740			0.00
$11_{38} - 11_{39}$	10 - 10				0.025
	12 - 12	8409.317	8409.417	0.200	0.25
		0400 (***		0.299	0.275
	11-11	8409.616			

We checked first the assignment by repeating some measurements with Stark spectroscopy given in Table 1, column 3. The hfs was not resolved. The frequencies differ from those of [1] (Table 1, column 4) sometimes by more than 300 kHz. The agreement with our MWFT measurements (Table 1, column 2) is better.

For the resolved lines the frequencies v_{FT} were calculated from the hfs pattern by adding the cal-

Notizen 1045

Table 3. Rotational and quadrupole coupling [MHz] constants of allylcyanide synperiplanar. κ asymetry parameter; σ : standard deviation of the fit [kHz]; $|(\chi^+, \chi^-)|$: correlation coefficient.

	11222 000 (65)	+ .	1.7(2.(2.1)		1.7(2.(24)
A	11323.008 (65)	$\chi_{-}^{+} = \chi_{bb} + \chi_{cc}$	1.763 (34)	Xaa	-1.763(34)
Б	3739.297 (16)	$\chi^- = \chi_{bb} - \chi_{cc}$	-2.331 (36)	Xbb	-0.284(35)
C	2858.522 (19)	(χ_{bb},χ_{cc})	0.1	Xcc	2.047 (35)
×	-0.791889				
σ	78				

culated hfs shifts to the frequencies of the components and taking the mean value. These mean values agree within the measuring error with the intensity weighted means.

In Table 3 we give the rotational constants for the rigid rotor model. The standard deviation of the fit for the Fourier transform measurement is 78 kHz. The highest correlation is |(A, C)| = 0.6. Rotational constants calculated from our Stark measurements v_{stark} agree within the error limits, but the standard deviation is 114 kHz.

In Table 2 we give the frequencies of the resolved hfs patterns. The measurements were difficult as the transient decay was rapid as two strong dipole moment components exist. The measurement of the 1_{01} – 0_{00} at 6597.819 MHz and 1_{11} – 0_{00} at 14 181.420 MHz was disturbed by nearby strong transitions. The splittings were analysed by first order hfs theory [5]. This approximation was checked by a program using direct diagonalisation of an appropriate Hamiltonian submatrix [6].

It was further proved that the off diagonal element χ_{ab} of the coupling tensor is without influence. The quadrupole coupling constants are given in Table 3. The standard deviation of the fit is 18 kHz, the mean splitting 354 kHz, the correlation is 0.1.

We thank the members of our group for help and discussion, the Deutsche Forschungsgemeinschaft and Fonds der Chemie for funds.

K. V. L. N. Sastry, V. M. Rao, and S. C. Dan, Can. J. Phys. 46, 959 (1968).

^[2] G. Bestmann, H. Dreizler, H. M\u00e4der, and U. Andresen, Z. Naturforsch. 35a, 392 (1980).

^[3] G. Bestmann and H. Dreizler, Z. Naturforsch. 37a, 58 (1982).

^[4] G. Bestmann, H. Dreizler, E. Fliege, and W. Stahl, J. Mol. Struct. 97, 215 (1983).

^[5] C. H. Townes and A. L. Schawlow, McGraw Hill, 1955,

Microwave Spectroscopy, Chapter 6.
[6] D. Hübner and M. Stolze, Diplomarbeiten, Kiel 1980.